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Chapter 1

Introduction

1.1 Motivation and Scope

Predicting multiphase 
ow and transport processes in the subsurface by
means of numerical simulation involves the following steps:

1. Developing a conceptual model of the natural system;

2. Assigning values to the input parameters;

3. Running the model, i.e., predicting the system state;

4. Interpreting the results and assessing the uncertainty of the predic-
tions.

The �rst step is the most diÆcult and also most important task, be-
cause the conceptual model provides the basis for all the subsequent steps.
Errors in the conceptual model usually have the largest impact on model
predictions.

In multiphase 
ow modeling, the second step (assigning parameter val-
ues) can be tedious because of the large number of parameters that enter
the model. Moreover, the physical interpretation of these parameters is
often ambiguous and they are diÆcult or even impossible to measure di-
rectly. Parameters can be estimated by automatically calibrating the model
against measured data. Inferring model-related parameters from observa-
tions is termed inverse modeling. Inverse modeling deals with parameters
and their sensitivities. Consequently, information regarding the signi�cance
of the parameters and their impact on model predictions is obtained as a
by-product of inverse modeling.

This lecture is intended to introduce inverse modeling concepts for appli-
cations in multiphase 
ow and transport simulations. While inverse model-
ing can be discussed in the jargon of applied mathematics and mathematical
statistics, a more practical approach is employed here, taylored to the needs
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2 CHAPTER 1. INTRODUCTION

of engineers who are interested in calibrating numerical models against ob-
served data. The following issues will be discussed:

� Fromulation of the forward problem;

� Measurement errors and the stochastic model;

� Maximum likelihood and the objective function;

� Minimization algorithms;

� Residual and error analysis;

� Uncertainty propagation analyses.

An introductory example will be given in Section 1.3, followed by a more
detailed discussion of the elements described above. In the following section,
inverse modeling is positioned within the overall framework of mathematical
modeling.

1.2 Inverse Modeling|The Big Picture

Parameter estimation, history matching, model calibration, and inverse mod-
eling are terms describing essentially the same technique with a slightly dif-
ferent objective in mind. The ultimate goal of inverse modeling is to assess
the best model and its parameters for predicting the behavior of a dynamic

ow system. It is obvious that the reliability of these predictions depends
on the appropriateness of the conceptual model and the parameters entering
the model. One should keep in mind that it is the intended use of the model
that determines the required degree of model sophistication as well as the
level of accuracy with which the parameters are to be estimated. In this
overall scheme, parameter estimation is only one, albeit important step in
the process of model development.

Inverse modeling consists of estimating model parameters from mea-
surements of the system response made at discrete points in space and time.
Automatic model calibration can be formulated as an optimization problem
that is solved in the presence of uncertainty. Uncertainty is a result of the
available observations being incomplete and exhibiting randommeasurement
errors.

The parameters to be estimated consist of selected coeÆcients in the
governing 
ow equations and may include hydrogeologic and thermophysical
properties, initial and boundary conditons, as well as parameterized aspects
of the conceptual model. The interpretation of these parameters depends
on the model structure and the overall purpose of the model. In this sense,
the parameters are strictly to be seen as model parameters (or model-related
parameters) rather than parameters of the geologic formation. Estimating



1.3. INTRODUCTORY EXAMPLE 3

parameter values from measurements therefore relates the real system to its
idealized representation.

Inverse modeling involves several iterative steps. Given a conceptual
model of the physical system, the results of parameter estimation may indi-
cate that the underlying model structure has to be modi�ed. This process of
iteratively updating the conceptual model and its parameters is sometimes
referred to as model identi�cation. We will focus here on the more nar-
row aspect of inverse modeling, namely parameter estimation by automatic
model calibration.

If automatic model calibration makes use of a gradient-based minimiza-
tion algorithm, the sensitivity of the calculated system response with respect
to the input parameters is evaluated. This information can also be used to
study the appropriateness of a proposed experimental design and to analyze
the uncertainty of model predictions. A computer program for inverse mod-
eling therefore provides information to support three types of applications:

� Sensitivity analysis;

� Parameter estimation;

� Uncertainty propagation analysis.

All three application modes are of practical signi�cance:

� Sensitivity analyses supply the measures needed to optimize the de-
sign of a laboratory experiment or �eld test. They also help identify
the parameters that excert the greatest impact on model predictions.
These are the parameters that must be determined with the lowest
possible estimation uncertainty.

� Parameter estimation by inverse modeling overcomes the time- and
labor-intensive tedium of trial-and-error model calibration. More im-
portant, the error analysis provides insight into the uncertainty of
the estimated parameters and reveals parameter correlations. Pre-
dictability can be improved when relying on e�ective, model-related
parameters estimated by inverse modeling.

� The quality of simulation results can be assessed by propagating the
uncertainty of the input parameters through the prediction model.

1.3 Introductory Example

The process of parameter estimation by automatic model calibration is il-
lustrated in the following example, which is described in detail in Finsterle
and Perso� [1997] [9]. A laboratory experiment was designed to estimate
permeability and porosity of very tight rock samples. A schematic of the
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experimental apparatus is shown in Figure 1.1. A rock sample is dried and
placed in a sample holder, which is attached to two gas reservoirs. To con-
duct a test, the upstream reservoir is rapidly pressurized using nitrogen gas
to a value about 300 kPa above the initial pressure of the system. Gas starts
to 
ow through the sample, and the change of pressure with time is observed
in both reservoirs.

N2 calib.
gauge

Whitey ball valve
pressure transducer

pup

relief
valve

manual
vent

pdo

∆p

Figure 1.1: Gas-pressure-pulse-decay apparatus

The process of inverse modeling involves the steps listed in Table 1.1.

We follow these steps for our speci�c example:

1. As part of model conceptualization, the relevant physical processes
have to be identi�ed, mathematically described, and implemented into
a numerical code. In this example, it is suÆcient to consider single-
phase gas 
ow. Because of the small porosity of the rock sample,
Klinkenberg [13] gas slip 
ow may become signi�cant and has to be
taken into account. The gas 
ow term is given by:

Fg = �k

�
1 +

b

p

�
�

�
rp (1.1)

where Fg is gas 
ux [kg s�1 m�2], k is absolute permeability [m2],
b is the Klinkenberg factor [Pa], � is density [kg m�3], � is dynamic
viscosity [Pa s], and p is pressure [Pa]. Note that density and viscosity
of a gas are functions of pressure and temperature as well as relative
humidity. This 
ow equation and the appropriate equation-of-states
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Table 1.1: Inverse Modeling Procedure: Major Steps
Step Description Issue

1 Develop a numerical model
of the experiment. Model conceptualization

2 Select parameters to be estimated. Parameterization
3 Select reasonable initial

parameter values. Prior information
4 Select data and identify

calibration points
in space and time. Calibration points

5 Assign uncertainties to
calibration points. Stochastic model

6 Calculate system response. Forward simulation
7 Compare calculated with observed

system response. Objective function
8 Update parameters to decrease

di�erence between observed and
calculated system response. Minimization algorithm

9 Repeat step 6{8 until
no further improvement
of the �t can be obtained. Convergence criteria

10 Analyze residuals and
estimation uncertainties. Error analysis

enter the mass and energy balance equations solved by the numerical
simulator TOUGH2 [17] [18].

2. The parameters to be estimated are the porosity �, the absolute per-
meability k, and the Klinkenberg factor b. Since both k and b are
expected to vary over many orders of magnitude, the logarithm of
these parameters will be estimated. Furthermore, logarithmic trans-
formation makes the inverse problem more linear and prevents the
parameters from becoming negative. The three parameters are sum-
marized in a vector p of length n = 3.

3. The initial parameter values are chosen as follows: � = 0:015, log(k) =
�19:0, and log(b) = 7:0. This example is very insensitive to changes
in the initial parameter guesses.

4. Observations available for model calibration are the pressure data in
the upstream and downstream reservoirs, respectively. 30 calibration
points, logarithmically spaced in time, are selected. The total number
of calibration points is therefore m = 60.
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5. The measurement errors of the pressure data are assumend to be un-
correlated and on the order of �zi = �z = 1000 Pa; i = 1; : : : ; m.
The covariance matrix Czz is a matrix of dimension m �m with �2z
on the diagonal and zeroes elsewhere.

6. The experiment is simulated using a numerical model. The dash-
dotted lines in Figure 1.2 show the pressure transient in the upstream
and downstream reservoirs obtained with the initial parameter set.

7. The di�erence between the model calculation and the data as seen
in Figure 1.2 is measured by the objective function. The standard
objective function is the sum of the squared weighted residuals:

S = rTC�1zz r =
mX
i=1

r2i
�2i

(1.2)

where r is a vector of length m holding the residuals, i.e., the di�er-
ences between the observed and calculated pressure at the calibration
points (see Equation (1.3) below). Note that weighted least-squares
leads to maximum likelihood estimates if the residuals are normally
distributed.

8. The minimization algorithm described in Chapter 3 proposes new pa-
rameter sets based on the gradient of the objective function with re-
spect to parameter vector p.

9. If a certain convergence criterion is met, go to Step 10, otherwise repeat
Step 6 with the updated parameter vector. The best �t obtained
after a few iterations is shown in Figure 1.2 (solid lines), matching the
observed data (symbols) almost perfectly.

10. The error and residual analysis will be discussed in detail in Chapter
4. In this example, the covariance matrix of the estimated parameters
reveals a very high correlation between permeability and Klinkenberg
parameter, leading to unacceptable estimation uncertainties despite
the perfect match. This demonstrates the importance of the error
analysis. The solution to this speci�c problem of ill-posedness is pre-
sented in [9].

The example above and Figure 1.3 illustrate the process and main el-
ements of inverse modeling, which will be discussed in more detail in the
following chapters. The example also demonstrates that the parameters of
interest may not be identi�ed despite a perfect match. The error analy-
sis suggests that the design of the experiment should be changed in order
to reduce the correlation between log(k) and log(b). The solution to the
ill-posedness of the problem is to simultaneously invert data from multiple
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Figure 1.2: Comparison between measured and calculated pressure transient
curves with the initial and �nal parameter set.

gas-pressure-pulse-decay experiments performed on di�erent pressure levels
[9].

The concept of inverse modeling as outlined here has been implemented
in a computer code named iTOUGH2 [5] [6][7]. iTOUGH2 is based on the
TOUGH2 [17][18] numerical simulator for nonisothermal 
ows of multicom-
ponent, multiphase 
uids in porous and fractured media.1

1.4 De�nitions

1.4.1 Typing conventions

� Scalars are represented by plain characters, e.g., krl.

� Vectors are lower-case bold characters, e.g., p.

� Matrices are upper-case bold characters, e.g., J.

� Elements of vectors or matrices are scalars with an index, e.g., p3 or
Jij .

� Measured quantities are indicated with an asteriks (�), e.g., the resid-
ual r = (z� � z) is the di�erence between the measured and the cal-
culated value of variable z; k� is a measured permeability value (prior
information), whereas k is its estimate from inverse modeling.

1
Information about iTOUGH2 can be obtained from the Web at

http://www-esd.lbl.gov=iTOUGH2.
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Figure 1.3: Inverse modeling 
ow chart.

1.4.2 Parameter vector p

The parameter vector p of length n contains the parameters to be estimated
by inverse modeling. The parameters must be input parameters of the sim-
ulation model (e.g., TOUGH2). For example, the elements of a parameter
vector of length n = 3, p = [p1; p2; p3]

T could be:

� p1: absolute permeability along the �rst principle axis of all elements
belonging to material domain SAND.

� p2: second parameter of default capillary pressure function (e.g., rep-
resenting van Genuchten parameter �.)

� p3 initial NAPL saturation for all elements of material domain CLAY.
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1.4.3 Vector of observations z

Vector z of length m contains dependent, observable variables at discrete
points in space and time, which are chosen to be calibration points. Ele-
ments of z may refer to measured quantities (data) or simulation results.
Observable variables must be part of the model output. Here are a few
examples:

� z�1 is the actually measured or interpolated pressure at a certain point
in space and time. z1 is the corresponding model output, i.e., the
calculated pressure in the corresponding element X and at output
time T .

� z2 is the average NAPL saturation in the entire model domain at time
T .

� z3 is the cumulative liquid 
ow rate to a pumping well, i.e., a sum of
calculated 
uxes across the corresponding interfaces in the numerical
model.

Both the parameter vector p and the vector of observations z have �nite
dimensions (n and m, respectively). For a heterogeneous aquifer with con-
tinuously varying properties, the dimension of the parameter vector is the-
oretically in�nite. Similarly, the system response is continuous (pressures
vary continuously in space and time). Again, the dimension of vector z
should be in�nite. The problem is solved by discretization. The reduc-
tion of the number of parameters is called parameterization, i.e., the aquifer
system is subdivided into several subregions with presumably constant prop-
erties. The reduction of the vector of observations is achieved by picking
discrete points in space and time for calibration. Note that discretization is
also necessary for numerical reasons, i.e., the continuous partial di�erential
equation describing multiphase 
ow is solved by a (discrete) �nite-di�erence
approximation in space and time.

The vector of observable variables may also contain parameters. For
example, if permeability has been measured on cores in the laboratory, this
information can be considered as an additional data point, and treated along
with the direct observations of the system response. Such measured param-
eter values are referred to as prior information.

1.4.4 Residual vector r

The residual vector r contains the di�erences between the measured and
calculated system response with elements

ri = z�i � zi i = 1; : : : ; m (1.3)
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For example, ri is the di�erence between the measured and calculated pres-
sure at a certain point in space and time. A special type of residuals are the
di�erences between the measured parameters (prior information) and the
estimated parameter values. This di�erence|appropriately weighted|can
be used for regularization of the inverse problem, making the solution more
stable and well-posed.

1.5 Course Structure

The course follows the diagram shown in Figure 1.3. However, the key el-
ement of inverse modeling|the simulation model that solves the forward
problem|is not discussed here. The methods described in the following
chapters are general and can be applied to basically any type of process
simulation. Nevertheless, we discuss inverse modeling in the context of mul-
tiphase 
ow simulation and make occasional reference to the TOUGH2 and
iTOUGH2 simulators.

Chapter 2 provides the statistical background and discusses the stochas-
tic model including the choice of the objective function. Minimization algo-
rithms and stopping criteria are introduced in Chapter 3. The residual and
uncertainty analyses are discussed in Chapter 4.

The objectives of inverse modeling and optimization are common to
many disciplines, including engineering, science, economics, and manufac-
turing. Unfortunately, textbooks on the subject are often tailored to speci�c
applications with their own terminology. On the other hand, if considered a
topic of applied mathematics, inverse modeling is usually presented in a way
that makes it diÆcult to derive useful tools for an engineer who is interested
in solving practical inverse problems. This course attempts to bridge the
gap between theroretical considerations of existence, uniqueness, and stabil-
ity of inverse problems, and the practical need to calibrate multiphase 
ow
models.

Introducions to optimization can be found in a number of textbooks
[1][11][15]. Review articles [14][19] in the �eld of water resources may serve
as a starting point for further reading. We speci�cally mention the series of
articles by Carrera and Neuman [1986] [2][3][4], which describe the concepts
of inverse modeling in a concise manner.



Chapter 2

The Stochastic Model

2.1 Systematic and Random Errors

Recall that inverse modeling consists of estimating parameters by minimiz-
ing some norm of the residuals (for example, Equation (1.2)). Residuals as
previously de�ned in Equation (1.3) contain contributions from both mea-
surement and modeling errors. Consider a dataset that is drawn from a true
but unknown system response (Figure 2.1). The individual measurement
error is de�ned as the di�erence between the measured and the true value.
The modeling error is de�ned as the di�erence between the true and the
calculated system response. Since the true system response is unknown,
neither the measurement nor the modeling error is known. However, we can
try to describe them in statistical terms by assuming that they follow a cer-
tain distribution. Furthermore, the di�erence between the measured and the
modeled quantities (i.e., the residuals) can be calculated. Note that the aim
of inverse modeling is to provide an estimate of the true system behavior.
If the true values is identi�ed, the residuals are equal to the measurement
errors. In other words, the statistical characteristic of the residuals should
be similar to that of the measurement errors.

It is very important to appreciate the di�erence between systematic and
random components in the residuals. The di�erence between systematic
and random components and their relation to the functional and stochastic
model, respectively, are illustrated in Table 2.1. The systematic compo-
nent of the system response is hopefully identi�ed by accurately modeling
the physical behavior. This is referred to as the functional model which
includes the conceptual model, the governing equations, the parameters en-
tering these equations, and the numerical scheme used to solve the problem.

Provided that the true system behavior is identi�ed, the residuals be-
come equal to the random components of the observed system response,
which are usually associated with the measurement errors. While the indi-
vidual measurement errors are not known a priori, they can be described in

11



Figure 2.1: True, measured, and calculated system response, de�nition of
measurement and modeling error.

Table 2.1: Systematic and Random Part of System Response
data = true response + measurement error

identi�ed component unidenti�ed component
systematic random
conceptual distributional assumption

functional model stochastic model
TOUGH2 C = �20V

calibration point = �tted value + residual

statistical terms. The so-called stochastic model comprises our assumptions
about the distribution of the measurement errors.

The assumption that the system response can be separated into a system-
atic part (modeled by the process simulator), and a random part (described
by the stochastic model) requires that all systematic errors are removed
from both the data and the model, i.e., the �nal residuals should only con-
tain random components that are accurately described by the stochastic
model.

By de�nition, outliers do not conform to the assumed distributions.
Moreover, if systematic errors are present, the estimated parameters are
likely to be biased. This bias is often signi�cantly larger than parameter
uncertainties that result from random measurement errors.

In the following paragraphs we discuss a few potential sources for sys-
tematic errors in the analysis of the gas-pressure-pulse-decay (GPPD) ex-
periment introduced in Section 1.3. Systematic errors occur in both the data
and the numerical simulation. In many cases it is diÆcult and also irrelevant
to distinguish between a systematic modeling error and a systematic error in
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the data. Systematic errors are simply the result of a conceptual di�erence
between the observation and the corresponding model output. It is more a
question of convenience which side of the problem can be better controlled.

Data from laboratory experiments are almost always easier to invert
than �eld data because the key processes involved are better understood,
the 
ow geometry is well known, and initial and boundary conditions are
better controlled. Nevertheless, a careful design of the testing apparatus
is important. For example, the volumes of the upstream and downstream
reservoir of the GPPD experiment have to be accurately determined; system
compliance e�ects should be minimized by choosing appropriate equipment
materials; leaking must be avoided by applying suÆcient con�ning pressures;
temperature should be kept constant.

Deviations from these conditions have to be corrected in the data, if
possible, or accurately reproduced in the model. For example, if temperature
varies during the course of the experiment, the pressure data can be adjusted
according to the ideal gas law. Alternatively, one could use a nonisothermal
model that directly accounts for the temperature dependency of density,
viscosity, and Klinkenberg factor. Note that while the latter approach is
more diÆcult to implement, it is also more accurate.

The TOUGH2 model used to analyze the GPPD data is based on an
equation-of-state module that describes the thermophysical properties of air
rather than nitrogen|the gas used in the experiment. Di�erences in density
and viscosity a�ect the pressure transient and thus the estimates. Density-
viscosity ratios between air and nitrogen di�er by a factor of about 1.05.
This leads to an underestimation of permeability by 5% if pressure data
from an experiment with nitrogen are inversely analyzed using air proper-
ties. In this case, the discrepancy between the data and the model output
can be compensated after the inversion. In most instances, however, when
the model output is a�ected in a nonlinear fashion, such corrections are not
possible. The estimation procedure must then be repeated with di�erent
assumptions regarding those aspects of the model that are considered un-
certain. This may provide some insight into the sensitivity of the results
with respect to individual errors. However, the impact of a combination
of errors is diÆcult to assess. In some cases, potential errors can be pa-
rameterized and subjected to the estimation process. An example of this
approach is discussed in [9], where uncertainties regarding initial conditions
and potential leaking are addressed.

In summary, the stochastic model deals with the random errors, assum-
ing that the systematic part of the system behavior is adequately reproduced
by the simulation model.
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2.2 Observation Covariance Matrix

In the previous section we saw that the unexplained part of the system re-
sponse cannot be described individually, but by means of a stochastic model.
We have to make an assumption about the distribution of the measurement
errors. The distribution of the �nal residuals is supposed to be identical with
the distribution of the measurement errors, assuming that the true system
response is correctly identi�ed by the model.

A reasonable assumption about the measurement errors is that they are
uncorrelated, normally distributed random variables with zero mean (the
residual analysis will have to show whether this assumption is justi�ed).
The distributional assumption can therefore be summarized in a covariance
matrix Czz . Czz is an m�m diagonal matrix. The i-th diagonal element of
matrixCzz is the variance representing the measurement error of observation
zi.

Czz =

2
666666664

�21 0 0 0 � � � 0
0 �2i 0 0 � � � 0
0 0 �2n 0 � � � 0
0 0 0 �2j � � � 0
...

...
...

...
. . .

...
0 0 0 0 � � � �2m

3
777777775

(2.1)

The purpose and interpretation of the elements of Czz are manifold:

� They scale data of di�erent quality, i.e., an accurate measurement
obtains a higher weight than a more uncertain measurement.

� They scale observations of di�erent types. For example, 
ow rates
and pressures have di�erent units and usually di�er by many orders of
magnitudes. They need to be scaled appropriately to be comparable
in a formalized parameter estimation procedure.

� They weight the �tting error.

� Czz is the stochastic model for maximum-likelihood estimation for
normally distributed residuals.

One should realize that only the ratio �2i =�
2
j is important, i.e., the estimated

parameter set is not a�ected by a linear scaling of the covariance matrix.
We can therefore introduce a factor �20 and write:

Czz = �20 �Vzz (2.2)

where Vzz is a positive de�nite matrix. �20 is termed the a priori error
variance. It is the variance of a dimensionless error of size one. Since it can
assume any positive value, we select it to be equal to 1.0 and directly work
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with the actual covariance matrix rather than Vzz . After the inversion, the
a posteriori or estimated error variance s20 is calculated. If the assumption
about the measurement errors was correct, and if the true system response
is identi�ed, the ratio s20=�

2
0 will not signi�cantly deviate from 1.0 (Section

4.1.2 contains more details about the Fisher model test).

2.3 Objective Function

2.3.1 The norm as a measure of mis�t

The objective function is a measure of the mis�t between the data and the
model calculation. It is also termed performance measure, penalty function,
energy function, norm, mis�t criterion, etc.

There are many ways to measure the di�erence between the observed
and calculated system response. In the standard trial-and-error calibration
procedure, the simulation results and data are plotted, and a rather subjec-
tive judgment is made as to how well the calculation matches the data. A
more objective way is to calculate a norm of the residual vector. A norm of
a vector is de�ned as follows:

jjrjj =

 
mX
i=1

jrij
p

!1=p

(2.3)

The most common norms are the L1-norm, the L2- or Euclidean norm, and
L1, leading to the L1-estimator, Least Squares, and Minmax, respectively.

The maximum likelihood approach discussed in Section 2.3.2 takes the
distributional assumption about the measurement errors as a basis for choos-
ing the objective function. It can be shown that normally distributed errors
lead to the well-known generalized least-squares objective function. The
central limit theorem makes least-squares a reasonable choice. However, the
distribution of the residuals often deviates from being Gaussian. For exam-
ple, the presence of outliers in the data or systematic modeling errors lead to
nonsymmetric distributions with stronger tails than predicted by the normal
distribution. For these cases, alternative objective functions may be more
appropriate to avoid biased estimates. These so-called robust estimators are
discussed in [10].

The minimum of the objective function indicates the best attainable �t
to the data. The parameters at the minimum are therefore considered best
estimates.

2.3.2 Maximum likelihood

Let p be the parameter vector of length n, an z the observation vector
of length m. The joint probability density function (pdf), �(z;p), is de-
�ned as the probability of observing the data z� if p were true: �(z;p) =
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Pr(z = z�jp). Note that p is unknown, nevertheless deterministic. If the
observations are independent random variables, the joint pdf is given by the
product of the probabilities of the individual observations:

�(z;p) =
nY

i=1

�(zi;p) (2.4)

From a di�erent perspective, this equation may be seen as describing
the likelihood of p if the values z�i are �xed. This is termed the likelihood
function:

�(z;p), L(p; z�) (2.5)

For each parameter set p, the likelihood function L(p; z�) gives the prob-
ability of observing z�. Thus we can think of L(p; z�) as a measure of how
'likely' p is to have produced the observed data z�. The method of maxi-
mum likelihood consists of �nding the speci�c value of the parameter that
is 'most likely' to have produced the data.

The maximum likelihood approach is discussed for the normal distribu-
tion in the following section.

2.3.3 Least squares

Let's assume that all measurement errors (z� � ẑ) are normally distributed
with mean E[(z�� ẑ)] = 0 and covariance matrix E[(z� � ẑ)(z� � ẑ)T ] =
Czz (if the errors follow a log-normal distribution, they have to be trans-
formed by taking the logarithm of (z�i � ẑi) to yield Gaussian distributions).
Note that the true, albeit unknown value of z is denoted by ẑ. The likelihood
function can be written as follows:

L(p; z�) = (2�)�m=2 jCzz j
�1=2 � exp

�
�
1

2
(z� � ẑ)TC

�1
zz (z� � ẑ)

�
(2.6)

It is obvious that if the stochastic model|the covariance matrix Czz|is
known, maximizing (2.6) is equivalent to minimizing the objective function

S = (z� � z(p))TC
�1
zz (z� � z(p)) (2.7)

Note that we have replaced the true value ẑ with the calculated value
z(p). Since (z� � z(p)) = r, and Czz is a diagonal matrix, S is the sum of
the squared residuals, weighted by the inverse of the prior variances �2i :

S =
mX
i=1

r2i
�2i

(2.8)

In summary: If the errors are normally distributed, the method of least
squares leads to maximum likelihood parameter estimates. The best es-
timate is the parameter vector p that minimizes the sum of the squared,
weighted residuals.
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2.4 Summary

In inverse modeling, parameters are derived from data that consist of two
components, (1) a systematic component re
ecting the system behavior, and
(2) a random component stemming from unexplained measurement errors.
The functional model deals with the systematic component, whereas the
stochastic model describes the random errors. If the distribution of the �nal
residuals after calibration is not consistent with the assumed distribution of
the measurement errors, this indicates that there is either an error in the
functional model, a systematic error in the data, or an error in the stochastic
model.

In maximum likelihood estimation one tries to �nd the parameters that
maximize the likelihood of the model to produce the observed data. Mini-
mizing the sum of the weighted squared residuals leads to maximum likeli-
hood estimates provided that the residuals follow a normal distribution.

The objective function represents the measure of mis�t between the data
and the model calculation. Parameters are estimated by iteratively mini-
mizing the objective function.



Chapter 3

Minimization Algorithm

3.1 Purpose and Classi�cation

The purpose of the minimization algorithm is to �nd the minimum of the
objective function by iteratively updating the parameters of the model. The
search for the minimum occures in the n-dimensional parameter space. Re-
call the the objective function is a global measure of the mis�t between the
data and the corresponding model output. Since the model output zi(p)
depends on the parameters, the �t can be improved by changing the ele-
ments of the parameter vector p. There are a number of strategies to �nd
parameter combinations that yield smaller values of the objective function,
eventually identifying a local or hopefully global minimum. The available
methods can be classi�ed as follows:

Direct Search Methods In these methods the objective function is
evaluated for di�erent parameter combinations, mapping out the ob-
jective function in the n-dimensional parameter space, looking for the
minimum. While no derivatives of the objective functions with respect
to the parameters must be calculated, these methods usually require
many function evaluations (i.e., solutions of the forward problem) and
are therefore ineÆcient. Examples of Direct Search Methods include:

� Trial-and-error model calibration

� Grid search

� Simplex algorithm

� Simulated annealing

� Genetic algorithms

� : : :

Gradient-Based Methods These methods require calculating the gra-
dient of the objective function with respect to the parameter vec-
tor. Updating the parameter vector in small steps along the direction

18
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given by the gradient is a robust albeit ineÆcient procedure. Various
modi�cations of that basic scheme have been proposed. Examples of
gradient-based minimization algorithms include:

� Steepest descent

� Conjugate gradient method

� : : :

Second-Order Methods These methods are based on the Hessian ma-
trix or various approximations thereof. The computational cost for
calculating the second derivatives is compensated by a rather eÆcient
stepping in the parameter space. Examples of second-order methods
include:

� Newton method

� Gauss-Newton method

� Levenberg-Marquardt

� : : :

Other classi�cations have been proposed in the literature [12]. Each of
the methods mentioned above has its advantages and disadvantages. In the
remainder of this chapter we focus on the Levenberg-Marquardt modi�ca-
tion of the Gauss-Newton algorithm for minimizing objective functions from
highly nonlinear models.

3.2 Gauss-Newton

We discuss the Gauss-Newton method for the minimization of the least-
squares objective function

S = (z� � z(p))T C�1zz (z� � z(p)) = rTC�1zz r (3.1)

Let's assume for the moment that the model is linear in the parameters,
making the objective function (3.1) quadratic as illustrated for one and two
parameters in Figure 3.1.

In multiphase 
ow modeling, the discretized 
ow and transport equations
are highly nonlinear functions of the parameters to be estimated. If the
model is nonlinear, the objective function is no longer quadratic. However,
most minimization algorithms for least-squares problems rely on a local
quadratic approximation to the objective function as shown in Figure 3.2.

The Gauss-Newton method can be derived directly from the objective
function. If the model is linear, the Gauss-Newton method leads to the opti-
mum parameter set in a single step. If the model is nonlinear, the objective
function is approximated at the current point in the parameter space, and



Figure 3.1: Objective function for a linear model as a function of (a) one
and (b) two parameters.

a Gauss-Newton step is performed as outlined below. The procedure is re-
peated from the newly obtained parameter set, until a convergence criterion
is met.

Local linearization means that we take the partial derivatives of the
model output at the calibration points|the elements of vector z|with re-
spect to the parameters of interest|the elements of vector p. This yields
the so-called Jacobian matrix J of dimensions m�n, the elements of which
are de�ned as

Jij =
@zi
@pj

i = 1; : : : ; m j = 1; : : : ; n (3.2)

There are several methods to calculate the elements Jij . The simplest,
albeit computationally costly way is the perturbation method using either
forward or centered �nite di�erences:

forward: Jij �
zi(p; pj + Æpj)� zi(p)

Æpj
(3.3)

centered: Jij �
zi(p; pj + Æpj)� zi(p; pj � Æpj)

2Æpj
(3.4)

where each parameter is perturbed by a small percentage (e.g., � � 0:01) of
its value:

Æpj = �pj (3.5)



Figure 3.2: Objective function for a nonlinear model as a function of (a) one
and (b) two parameters. Also shown are the quadratic approximations at
p� and Gauss-Newton steps.

Note that calculating a forward �nite di�erence approximation of the
Jacobian matrix J requires n+1 solutions of the forward problem, i.e., n+1
transient simulations from time zero to the time of the last calibration point.
Centered �nite di�erences (3.4) are more accurate, but require 2n+ 1 runs.
In most cases, high accuracy is not essential far away from the minimum, i.e.,
at the beginning of the optimization process, but may become crucial as the
minimum is approached. Furthermore, the linear error analysis discussed in
Chapter 4 depends on the Jacobian evaluated at the minimum.

The Gauss-Newton solution in the linear case can easily be derived from
the objective function (3.1) by �rst noting that z = Jp,

S = (z� � Jp)TC�1zz (z
� � Jp) (3.6)

and then setting the derivative to zero in order to obtain the minimum:

@S

@p
= (�J)TC�1zz (z

� � Jp) + (z� � Jp)TC�1zz (�J)

= �JTC�1zz z
� + J

T
C�1zz Jp � z�

T
C�1zz J + (Jp)TC�1zz J
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Table 3.1: The Gauss-Newton Minimization Algorithm

Step 1: Initialization:
� Set iteration index k = 0.

� De�ne initial parameter set p(k=0).

Step 2: Run simulation model with parameter vector p(k).

Step 3: Evaluate r(p(k)), S(p(k)), and J(p(k)).

Step 4: Calculate parameter update: �p =
�
JTC�1zz J

�
�1
JTC�1zz r

Step 5: Update parameter vector: p(k+1) = p(k) +�p

Step 6: Evaluate S(p(k+1).

Step 7: Evaluate convergence criteria.
If converged, go to Step 8, else set k = k + 1 and go to Step 2.

Step 8: Minimum identi�ed. Proceed with error analysis.

= 2
�
JTC�1zz Jp � JTC�1zz z

�

�
= 0 (3.7)

From this we obtain the solution vector p that minimizes S:

p =
�
JTC�1zz J

�
�1
JTC�1zz z

� (3.8)

Matrix (JTC�1zz J) is symmetric and of dimension n� n. It is sometimes
termed Fisher Information Matrix. The Fisher information matrix is an
approximation of the Hessian matrix of S.

The best estimate parameter set is odirectly btained only if the model
is linear. For nonlinear models, the solution has to be sought iteratively. In
the iterative scheme, the data vector z� is replaced by the residual vector
r(p(k)), where the superscript (k) labels the k-th iteration or minimization
step. Then, the vector �p holding the parameter updates can be calculated.
The Gauss-Newton method is summarized in Table 3.1.

The Gauss-Newton step is very eÆcient if the model is linear or nearly
linear, i.e., if (JTC�1zz J) is a good approximation of the Hessian. If the model
is highly nonlinear, however, the parameter update (Step 4 in Table 3.1) can
be too large, leading to an ineÆcient or even unsuccessful step where the
value of the objective function S is increased rather than decreased.
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3.3 Levenberg-Marquardt

For nonlinear models and if the parameter vector p is far away from the opti-
mum parameter set, the Hessian is not necessarily a positive-de�nite matrix,
and its approximation by matrix (JTC�1zz J) (see Gauss-Newton method,
Section 3.2) may not lead to a successful or eÆcient step. Recall that the
Hessian is an n�n matrix with the second partial derivatives of the objective
function S = rTC�1zz r. Its elements can be written as follows:

Hjk = 2
mX
i=1

"
1

�2i

 
@ri
@pj

@ri
@pk

+ ri
@2ri

@pj@pk

!#
(3.9)

In matrix form, the Hessian reads

H = 2

 
JTC�1zz J+

mX
i=1

riGi

!
(3.10)

where Gi = r2ri=�i is the Hessian of the weighted residuals. Denoting
the sum in Equation (3.10) with S, the Hessian becomes

H = 2
�
JTC�1zz J+ S

�
(3.11)

Note that S is zero if the model is linear, con�rming the solution pre-
viously discussed in Section 3.2. However, S cannot be neglected in the
nonlinear case, especially if the residuals are large, i.e., far away from the
minimum. Also note that the positive and negative residuals do not cancel
one another, i.e., the Hessian is not necessarily a positive-de�nite matrix.

The various iterative solutions to the nonlinear least-squares problem
are based on di�erent approximations to the Hessian. While the �rst term
in Equation (3.11) is relatively easy to calculate, the evaluation of S is
computationally costly. However, it may not be necessary to evaluate S
if it is small compared with (JTC�1zz J). As discussed above, the Gauss-
Newton method simply ignores S, assuming that the model is only slightly
nonlinear and that the residuals are relatively small as is the case close to
the minimum.

In the Levenberg-Marquardt method, the approximation to the Hessian
is assured to be positive-de�nite by replacing S with an n � n diagonal
matrix �D. The scalar � is the so-called Levenberg parameter. It is updated
following a strategy proposed byMarquardt [16]. The Levenberg-Marquardt
minimization algorithm is described in Table 3.2.

Far away from the minimum, i.e., during the �rst few iterations, a rela-
tively large value of � is chosen, leading to a small step along the gradient
of S. Stepping along the steepest descent direction is robust, but ineÆ-
cient. The Levenberg parameter is decreased after each successful step.
With decreasing �, as the minimum is approached, the parameter update



Figure 3.3: Steps proposed by the Levenberg-Marquardt method as a func-
tion of the Levenberg parameter �.

�p approximates that proposed by the Gauss-Newton algorithm with its
quadratic convergence rate. Figure 3.3 shows various end points of steps
taken by the Levenberg-Marquardt algorithm as a function of �.

3.4 Stopping Criteria

As we have seen in the previous sections, the minimum is approached by
proposing new parameter sets that lead to reduced values of the objec-
tive function. Stopping criteria have to be speci�ed to decide whether the
minimum has been identi�ed. Theroetically, the minimum of the objective
function is detected if all the elements of the gradient vector @S=@p are zero.
In practice, however, one of the following convergence criteria are used to
stop optimization:

� The objective function is smaller than a speci�ed tolerance;

� The normalized step size is smaller than a minimum relative step size;

� The norm of the gradient vector is smaller than a speci�ed tolerance;

� The Levenberg parameter exceeds a speci�ed value;

� The number of unsuccessful uphill step exceeds a speci�ed tolerance;

� All parameters are at their lower or upper bounds;

� The number of iteration exceeds a speci�ed value;
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� : : :

Note that the convergence criteria may vary if a minimization algorithm
other than Levenberg-Marquardt is employed. For example, no gradient is
available when using one of the Direct Search Methods, making it impossible
to use the optimality measure as a stopping criterion.

The objective function is usually substantially reduced during the �rst
few optimization steps. Limiting the number of iterations based on experi-
ence is thus a reasonable convergence criterion.
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Table 3.2: The Levenberg-Marquardt Minimization Algorithm

Step 1: Initialization:
� Set iteration index k = 0.
� De�ne initial value of Levenberg parameter �.
� De�ne Marquardt parameter � > 1.

� De�ne initial parameter set p(k=0).

Step 2: Run simulation model with parameter vector p(k).

Step 3: Evaluate r(p(k)), S(p(k)), and J(p(k)).

Step 4: Propose parameter update: �p =
�
JTC�1zz J+ �D

�
�1
JTC�1zz r

where D is an n� n diagonal matrix with Dii = (JTC�1zz J)ii

Step 5: Update parameter vector: p(k+1) = p(k) +�p

Step 6: Evaluate S(p(k+1).

Step 7: If S(p(k+1)) � S(p(k)) multiply � by � and go to Step 4.

If S(p(k+1)) < S(p(k)) divide � by � and go to Step 8.

Step 8: Evaluate convergence criteria.
If converged, go to Step 9, else set k = k + 1 and go to Step 2.

Step 9: Minimum identi�ed. Proceed with error analysis.



Chapter 4

Error Analysis

4.1 A Posteriori Error Analysis

4.1.1 Introduction

One of the key advantages of a formalized approach to parameter estimation
is the possibility to perform an extensive a posteriori error analysis. First,
the residual analysis provides some measure of the overall goodness-of-�t,
identi�es systematic errors, trends in the model, or outliers in the data.
Next we can determine the uncertainty of the estimated parameters. Note
that a good match does not necessarily mean that the estimates are rea-
sonable. They may be highly uncertain due to high parameter correlation
(an indication of overparameterization). The covariance matrix of the esti-
mated parameters can be further analyzed to obtain correlation coeÆcients,
parameter combinations that lead to similar matches, etc. Finally, we can
calculate the uncertainty of the model predictions using either linear error
propagation analysis or Monte Carlo simulations.

4.1.2 Estimated error variance s
2
0 and Fisher Model Test

The estimated error variance represents the variance of the mean weighted
residual and is thus a measure of goodness-of-�t:

s20 =
rTC�1zz r

m� n
(4.1)

Note that if the residuals are consistent with the distributional assump-
tion about the measurement errors (covariance matrix Czz), then the esti-
mated error variance assumes a value close to one. Since s20 is an estimate
of �20 (see Equation (2.2)), the denominator is (m� n) rather than just m.
The di�erence between the number of calibration points and the number of
parameters (m � n) is called the degree of freedom. It can be shown that
the ratio s20=�

2
0 follows an F -distribution with the two degrees of freedom

27
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Table 4.1: Fisher Model Test
Fm�n:1;1�� < s20=�

2
0 ) Error in functional or

stochastic model.
1 � s20=�

2
0 � Fm�n:1;1�� ) Model test passed;

use s20 for subsequent error analysis.
s20=�

2
0 < 1 ) Error in stochastic model;

use �20 for subsequent error analysis.

f1 = (m � n), and f2 = 1. We can therefore statistically test whether
the match deviates signi�cantly from the modeler's expectations which were
expressed through matrix Czz . The Fisher model test is shown in Table 4.1.

Note that the Fisher model test is only useful if the stochastic model
is well de�ned. Otherwise, the ratio s20=�

2
0 is just a relative measure of

goodness-of-�t.

4.1.3 Covariance matrix of estimated parameters

Next we calculate the expected value and the covariance matrix of the es-
timated parameters, Cpp. Based on the linearity assumption we obtain for
the estimated parameter vector (see also Equation (3.8)):

p̂ =
�
JTC�1zz J

�
�1
JTC�1zz z

� (4.2)

Evaluating the expected value of p̂ yields:

E[p̂] =
�
JTC�1zz J

�
�1
JTC�1zz E[z�]| {z }

Jp

= p (4.3)

Equation(4.3) demonstrates that the expected value of the estimated
parameter is equal to the parameter itself, i.e., (4.2) is an unbiased estimator.

The covariance matrix is de�ned as

Cpp = E[(p̂� E[p̂])(p̂� E[p̂])T ] (4.4)

Inserting Equation (4.2) for p̂ and Equation (4.3) for E[p̂] yields after
some rearrangement:

Cpp = s20 �
�
JTC�1zz J

�
�1

(4.5)

The Jacobian J is evaluated at the optimum parameter set. The inter-
pretation of the covariance matrix (4.5) provides the key criteria to evaluate
inverse modeling results. First we note that Cpp is directly proportional to
the overall goodness-of-�t expressed by s20. The diagonal elements of Cpp

contain the variances �2ii of the estimated parameters.
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Next we shortly discuss the impact of correlations on the estimation
error. Correlations among parameters can be described as a conjoint impact
of parameter changes on the system behavior. The correlation coeÆcient is
given by:

rij =
cijq

�2ii � �
2
jj

(4.6)

where cij are the covariances, i.e., the o�-diagonal elements of Cpp. The
correlation coeÆcient assumes values between -1 and 1; a value of zero in-
dicates no statistical correlation between parameter i and j, a value close
to -1 or 1 indicates a strong correlation, i.e., the two parameters cannot be
determined independently. For example, if two parameters are negatively
correlated, a similar system response is obtained by concurrently increas-
ing one and decreasing the other parameter. Even though certain pairs of
parameters may exhibit preferential correlation structures, correlations are
not invariable entities of parameter combinations. They obviously depend
on the data available, and also on the number of simultaneously estimated
parameters, since indirect correlations may overwhelm the direct correla-
tions. If correlations exist, the uncertainty of one parameter does a�ect the
uncertainty of the other parameter. The diagonal elements of matrix Cpp,
which are the variances from the joint probability density function, account
for this fact. They have to be distinguished from the conditional standard
deviation ��ii which measures the uncertainty of a parameter assuming that
all the other parameters are either exactly known or uncorrelated. The con-
ditional standard deviation is obviously always smaller than that from the
joint probability density function. The situation is illustrated in Figure 4.1
for the case of two parameters. The ratio

�i =
��ii
�ii

(4.7)

is a measure of how independently parameter i can be estimated. Small
values of �i usually indicate that the uncertainty �ii of a parameter could
be reduced by lowering its correlation to other parameters. We mention
in passing that the length and orientation of the semiaxis of the elliptical
con�dence region shown in Figure 4.1 can be obtained from an eigenanalysis
of matrix Cpp.

An example illustrates the importance of the error analysis in inverse
modeling. Table 4.2 shows the covariance matrix from the GPPD exper-
iment discussed in Section 1.3. The diagonal contains the variances, the
lower triangle is the covariance matrix, and the upper triangle holds the
corresponding correlation coeÆcients calculated using Equation(4.6).

From the perfect match (see Figure 1.2) and generally high sensitivity
coeÆcients, one might expect that an accurate estimation of the three pa-
rameters is possible. However, an inspection of the covariance matrix in



Figure 4.1: Two-dimensional con�dence region from linear error analysis.
Joint and conditional standard deviations are indicated.

Table 4.2: Estimation Covariance and Correlation Matrices from GPPD
Experiment

log(k) log(b) Porosity ��ii=�ii
log(k) 1.67 < �0:99 �0:87 < 0:01
log(b) �1:90 2.16 0.87 < 0:01
Porosity �5:70� 10�4 6:59� 10�4 2:64� 10�7 0.48

Table 4.2 reveals a large estimation uncertainty. The standard deviation
of both permeability and Klinkenberg factor is greater than one order of
magnitude. This is obviously a result of the high correlation between the
two parameters. The correlation coeÆcient between log(k) and log(b) is
very close to -1, indicating that an increase in one parameter can be almost
completely compensated by a decrease in the other parameter. The physical
explanation is evident from Equation (1.1), where k and b become linearly
dependent for a constant average pressure within the sample. The ratio of
the conditional and joint standard deviation shown in the last column of
Table 4.2 con�rms the high dependency between the two parameters log(k)
and log(b).

The pressure dependency of gas slip 
ow suggests that the statistical
correlation between the two parameters of interest can be reduced by per-
forming experiments at di�erent pressure levels. A simultaneous inversion
of data from several experiments should yield a unique and stable solution
with low correlation coeÆcients and low estimation uncertainties. Data from
three GPPD experiments were simultaneously matched as shown in Figure
4.2.

Table 4.3 shows that the correlation between log(k) and log(b) is weak-
ened from �0:99 in the previous case to �0:52. As expected, this leads to
more independent estimates as implied by the values in the last column of
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Table 4.3: Estimation Covariance and Correlation Matrices from Modi�ed
GPPD Experiment

log(k) log(b) Porosity ��ii=�ii
log(k) 1:04� 10�4 �0:52 �0:12 0.85
log(b) �1:07� 10�4 4:10� 10�4 �0:02 0.85
Porosity �1:30� 10�6 �3:62� 10�7 1:06� 10�6 0.99

Table 4.3, and a signi�cant reduction in the estimation error.
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Figure 4.2: Comparison between measured and calculated pressure transient
curves with the initial and �nal parameter set.

This example demonstrates that a good match and high parameter sen-
sitivities are not suÆcient to guarantee a meaningful solution of the inverse
problem. The a posteriori error analysis �rst revealed high estimation uncer-
tainties, and suggested modifying the experiment such that the correlation
between log(k) and log(b) be reduced. As a result, a successful inversion
was performed leading to accurate estimates of the parameters of interest.

4.1.4 Residual analysis and model identi�cation

As mentioned earlier, maximum likelihood estimation leads to optimum pa-
rameters for a given model structure. However, this does not imply that
the representation of the real system is satisfying. If the conceptual model
fails to reproduce the salient features of the system, the calibrated model
may not be able to match the observed data as expected (recall that our
expectation regarding the �t is re
ected in the a priori covariance matrix
Czz). The Fisher Model Test outlined in Section 4.1.2 is a �rst indication of
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whether the model �ts the data well enough so that the underlying concep-
tual model can be accepted. Furthermore, a detailed residual analysis may
reveal trends in the residuals, indicating that there is a systematic error in
the model or the data.

Figure 4.3 shows the residuals from the simultaneous inversion of three
GPPD experiments. The apparently good match depicted in Figure 4.2 in
fact exhibits a systematic error at late times for Experiments No. 2 and 3,
which were performed at higher pressure levels. The fact that the model
systematically overpredicts the measured data suggests that there is a gas
leak in the experimental apparatus. The gas leak can be incorporated into
the numerical model by specifying a sink term. Its value can be estimated
along with the other parameters. Figure 4.4 shows that the systematic errors
vanish by estimating two sink terms representing the gas leaks. This leads
to randomly distributed residuals consistent with the assumptions described
in the stochastic model.
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Figure 4.3: Residuals as a function of time, showing systematic overpredic-
tion of pressures at late times.

The desire to obtain a good match between the observed and predicted
system response may tempt the modeler to increase the number of unknown
parameters, as was done in the previous example, where two additional sink
term parameters were introduced. Unfortunately, increasing the number of
parameters results in a decrease in parameter reliability because the param-
eters become more strongly correlated. Furthermore, the degree of freedom
is reduced. As a result, the model may become overparameterized.

The error analysis may indicate that too many parameters are included
in the inversion. In addition, model identi�cation criteria can be evaluated
and used for selecting the most appropriate model. For more details about
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Figure 4.4: Residuals as a function of time after removal of systematic error
by estimating sink terms (note the di�erent scale).

this important topic, the reader is referred to [2][3][4][9].

4.2 Uncertainty Propagation Analysis

4.2.1 Introduction

Model predictions are inherently uncertain and may signi�cantly deviate
from the true system behavior. There are many reasons for the inconsistency
between model predictions and the actual or observed system behavior. The
main sources for modeling errors include:

� Inconsistencies and errors in the conceptual model;

� Uncertainty in the input parameters;

� Discretization errors.

As mentioned in Section 1.1, the conceptual model is by far the most
important element in numerical modeling. Considerable e�ort should be
spent on carefully developing the conceptual model, because errors in the
model structure are diÆcult to identify and to correct, and they usually
have the largest impact on the model predictions.

The second source of prediction errors is insuÆcient knowledge about
the model parameters. Errors or uncertainties in the input parameters lead
to errors or uncertainties in the model predictions. The purpose of inverse
modeling is to estimate the best parameters for a given model structure, and
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to reduce parameter uncertainty. Nevertheless, there is a need to quanti�y
the uncertainty in the model predictions as a result of parameter uncertainty,
which is the topic of this lecture.

Finally, the numerical solution of the governing equation has only �nite
precision and may su�er from discretization errors such as numerical dis-
persion. While care must be taken when choosing the numerical scheme,
errors from the numerical model are usually smaller than errors made by
using wrong parameter values, which in turn are small compared with the
errors from using an inappropriate conceptual model. One should also keep
in mind that modeling involves an abstraction process, i.e., no exact so-
lution is sought, but an approximation that is reasonable and capable of
reproducing the salient features of the system to be studied.

4.2.2 Linear analysis

Linear or First-Order-Second-Moment (FOSM) uncertainty propagation anal-
ysis quanti�es the uncertainty in model predictions as a result of parameter
uncertainty. As the name indicates, FOSM is the analysis of the mean
and covariance of a random function based on its �rst-order Taylor series
expansion. The covariance of parameter estimates is translated into the co-
variance of the simulated system response. FOSM analysis presumes that
the mean and covariance are suÆcient to characterize the distribution of
the dependent variables, i.e., the model results are assumed to be normally
distributed. This assumption is valid whenever parameter uncertainties are
suÆciently small, or when the model is linear and the distribution of the
input parameters is normal. The normality and linearity assumptions must
be checked before applying FOSM.

We develop expressions for the covariance matrix of the model prediction
using �rst-order Taylor series expansion. Let p̂ be a vector of length n, hold-
ing the parameters considered uncertain. Its covariance matrix of dimension
n� n is denoted by Cpp. Furthermore, z is a vector of length m containing
the simulation results at certain points in space and time. These model
predictions are a function of the parameter vector p. Finally, let J be the
m � n Jacobian matrix holding sensitivity coeÆcients, i.e., Jij = @zi=@pj.
The model prediction z(p) can be approximated using �rst-order Taylor
series expansion as follows:

z(p) � z(p̂) + J(p� p̂) (4.8)

The mean is given by:

E[z(p)] � E[z(p̂)] + E[J(p� p̂)]

� E[z(p̂)]| {z }
z(p̂)

+E[J] � E[(p� p̂)]| {z }
0



4.2. UNCERTAINTY PROPAGATION ANALYSIS 35

� z(p̂) (4.9)

The �rst-order approximation of the expected values of the dependent
variables is the vector of the model prediction obtained using the mean
parameters.

The covariance matrix of the simulated system response is derived using
the following de�nition:

Cov[z] � E[(z� ẑ)(z� ẑ)T ] (4.10)

Cov[z(p)] � E[( z(p)| {z }
z(p̂)+J(p�p̂)

�E[z(p̂)]| {z }
z(p̂)

) (z(p)� E[z(p)])T ]

� E[fJ(p� p̂)gf(J(p� p̂)gT ]

� JfE[(p� p̂)(p� p̂)T ]| {z }
Cov(p̂)

gJT

� JCppJ
T � Cẑẑ (4.11)

If no correlations are taken into account, i.e., if Cpp is a diagonal matrix
with the parameter variances �2pj (j = 1; : : : ; n) on its diagonal, the uncer-
tainty of a speci�c model prediction ẑi (i = 1; : : : ; m), e.g., the predicted
pressure at a certain point in space and time, is given by:

�2ẑi =

�
@zi
@p1

�2
�2p1 +

�
@zi
@p2

�2
�2p2 + � � �+

�
@zi
@pn

�2
�2pn (4.12)

The variance of a model prediction is the sum of the squared products
of the partial derivatives times the variance of the respective parameter.
In general, the covariance matrix of the predicted system response is the
expected value of the squared di�erences between the prediction and the
expected value of the prediction.

4.2.3 Monte Carlo simulations

An alternative to First-Order-Second-Moment error propagation analysis is
performingMonte Carlo simulations. Monte Carlo (MC) simulation requires
repetitive solution of the forward problem, with the parameters randomly
sampled from their suspected probability distributions. The output from
MC runs is then used to analyze the statistical properties of the distribution
of the model prediction. The procedure is as follows:

1. De�ne probability distributions for all parameters.

2. Randomly sample parameter values from the de�ned distributions, i.e.,
generate parameter values that follow the given probability density
function.
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3. Combine sampled parameter values randomly to obtain a parameter
vector. Since the combination of parameter values is random, no cor-
relation between parameters is introduced.

4. Run simulation and store results.

5. Repeat steps (2) through (4) many times.

6. Perform statistical analysis (histogram, moments, etc.) of ensemble of
model output.

Advantages :

� Any distribution function (uniform, normal, log-normal, exponential,
etc.) can be chosen to describe parameter uncertainty.

� No assumption is made about the distributional form of the model
output, i.e., the full distribution of prediction uncertainty is obtained.
Monte Carlo is a \full distribution analysis."

� Nonlinearities are automatically taken into account.

� Results fromMonte Carlo simulations are physically feasible (note that
FOSM analysis assigns a certain probability also to system behaviors
that are physically not possible!).

Disadvantages :

� Monte Carlo simulations are computationally very expensive.

� Results from MC uncertainty analysis are diÆcult to report (note that
FOSM assumes that the errors are normally distributed, i.e., they can
be reported by a single number, namely the standard deviation).

� Correlations among parameters are not taken into account (note that
extensions of the simple Monte Carlo approach exist that take into
account correlations among parameters).

4.2.4 Example

A short example illustrates the di�erences between the linear FOSM un-
certainty propagation analysis and Monte Carlo simulations. As discussed
above, for small standard deviations of the input parameters, and if the
model output can be approximated by a linear function of the parameters
within the range of the error band, FOSM is a fast method to calculate a
measure of prediction uncertainty that is easy to report. If the model is
highly nonlinear, and the uncertainties of the input parameters are large,
Monte Carlo simulations have to be performed to examine many parameter
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combinations according to their probabilities. Monte Carlo simulations pro-
vide the full distribution of the model output at the selected points in space
and time. The Monte Carlo method is very 
exible in handling non-Gaussian
distributions of both input parameters and output variables, but they are
computationally expensive, and results are diÆcult to report. In this section
we compare both approaches for a synthetic laboratory experiment consist-
ing of three parts: (1) injection of water into a partially saturated sand
column for 5 minutes under constant pressure, (2) injection of gas for 2.5
minutes, followed by (3) a 2.5 minute shut-in recovery period.

The standard deviations of three uncorrelated input parameters, the
logarithm of the absolute permeability log(k), porosity �, and the initial
gas saturation Sgi of a soil column are assumed to be 0.1, 0.05, and 0.05,
respectively. Performing a simulation of a synthetic laboratory experiment,
we are interested in the reliability of the model predictions, for example, the
uncertainty of the pressure in the center of the column.

The results from both the FOSM and Monte Carlo uncertainty analyses
are visualized in Figure 4.5. While the linear FOSM analysis gives a reason-
able estimate of prediction uncertainty for most parts of the experiment, the
Monte Carlo simulations reveal an asymmetry of the output distribution in
the period where nonlinearities prevail. Note that FOSM analysis assigns
a certain probability to pressure responses that are below 1 bar, which is
physically not possible in this experiment. The Monte Carlo simulations
stay away from this lower bound. A parameter combination of low per-
meability, high porosity, and low initial gas saturation yielded the highest
pressures.
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Figure 4.5: Comparison between FOSM and Monte Carlo uncertainty prop-
agation analyses.



Chapter 5

Computer Exercise

5.1 Purpose

The purpose of the following computer exercises is to make the procedure
of inverse modeling transparent. Seemingly abstract concepts such as the
stochastic model are more easily understood when applying them to actual
data. On the other hand, obtaining a good match and correctly interpreting
inverse modeling results remains a diÆcult task especially when applying to
real data. One should keep in mind, however, that the same diÆculties must
be faced when trying to match data by trial-and-error model calibration.
The additional information provided by inverse modeling reveals weaknesses
in the current model conceptualization, uncovers high sensitivities that need
to be carefully examined, and points towards aspects of the model that are
supposed to be modi�ed.

The inverse modeling code provided for these exercises is iTOUGH2
[6][7],1 which is based on the TOUGH2 simulator [17][18].

5.2 iTOUGH2

5.2.1 Summary description

iTOUGH2 is a computer program that provides inverse modeling capabil-
ities for the TOUGH2 code. TOUGH2 is a numerical simulator for non-
isothermal 
ows of multicomponent, multiphase 
uids in porous and frac-
tured media. While the main purpose of iTOUGH2 is to estimate model-
related hydraulic properties by calibrating TOUGH2 models to laboratory
or �eld data, the information obtained by evaluating parameter sensitivities
can be used to optimize the design of an experiment, and to analyze the
uncertainty of model predictions.

1
Information about iTOUGH2 can be obtained from the World Wide Web at

http://www-esd.lbl.gov/iTOUGH2.

38
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iTOUGH2 solves the inverse problem by automatic model calibration
based on the maximum likelihood approach. All TOUGH2 input parame-
ters can be considered unknown or uncertain. The parameters are estimated
based on any type of observations for which a corresponding TOUGH2 out-
put is available. A number of di�erent objective functions and minimization
algorithms are available. One of the key features of iTOUGH2 is its ex-
tensive error analysis which provides statistical information about residuals,
estimation uncertainties, and the ability to discriminate among model alter-
natives. The impact of parameter uncertainties on model predictions can be
studied by means of First-Order-Second-Moment uncertainty propagation
analysis or Monte Carlo simulations.

5.2.2 Basic elements of iTOUGH2 input language

General Remarks

� provide TOUGH2 input �le in standard TOUGH2 format

� provide iTOUGH2 input �le de�ning parameters, data, and program
options

� structured high-level command input language

� free format, case-insensitive, 
exible command interpreter, comments,
error messages

Elements

>, >>, >>>, ... : Command Level Marker: Command expected on same line
<, <<, <<<, ... : Terminate command level
Commands/Keywords : Trigger option, request input, invoke new command level
Parameters : Numerical values, strings, variable names, etc.
: : Provide input parameter(s) immediately after a colon

Example

> PARAMETER

>> estimate ABSOLUTE permeability

>>> ROCK: ATMOS BOUND SOI_1 +3 (one value for 6 rocks)

>>>> print LIST of all possible commands

>>>> ANNOTATION : permeability

>>>> estimate LOGARITHM

>>>> INDEX : 1 2 (horizontal perm. only)

>>>> initial GUESS is : -14.0

>>>> RANGE : -18.0 -12.0 (upper and lower bounds)

>>>> maximum STEP : 1.0 (please HELP!)
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>>>> don't WEIGHT p.i.: 0.0

<<<<

<<<

<<

Special Commands

The following special commands are applicable on all command levels.

>>> LIST : prints list of all commands accepted on this command level
>>> command HELP : provides short help message about the command
/* : beginning of ignored block
*/ : end of ignored block
# in �rst column : line ignored

Example Special Commands

>> LIST all available commands on this level

>> PRESSURE (which pressure is this? --> HELP!!!)

>>> ELEMENT: AX1_1

# >>>> ANNOTATION: L1 SOURCE 1

>>>> DATA [MINUTE] FILE: hL1.1.dat

>>>> DEVIATION: 100.0 HELP

<<<<

/* ignore the following 5 lines

>>> ELEMENT: AX112

>>>> ANNOTATION: L4 DETECT

>>>> DATA [MINUTE] FILE: hL4.1.dat

>>>> DEVIATION: 100.0

<<<<

*/

<<<

<<

First Level Commands and General Structure

> PARAMETERS (Define TOUGH2 parameters to be estimated)

>> specify parameter type

>>> specify parameter domain

>>>> provide details

<<<<

<<<

<<

> OBSERVATION (= data based on which parameters will be estimated)

>> specify calibration points in TIME

>> specify observation type
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>>> specify location

>>>> provide details

>>>> provide data

<<<<

<<<

<<

> COMPUTATION (program options)

>> Stopping criteria

>> Program options

>> Output

All iTOUGH2 commands are documented on the iTOUGH2 Web Site
http://www-esd.lbl.gov=iTOUGH2, or can be printed to the screen using
command it2help.

5.3 Sample Problem

5.3.1 Problem description

Consider the following laboratory experiment (Figure 5.1):

Water is injected applying a constant pressure head of 1 m into a one-
dimensional, horizontal column �lled with uniform, partially saturated sand.
Pressure at the outlet is kept constant at atmospheric conditions.

We assume that the objective of the laboratory experiment is to estimate
the permeability and the porosity of the sand as well as the initial gas
saturation. Furthermore, we presume that only one 
ow meter and one
pressure transducer are available for data collection. The injection rate is
measured at the inlet, and pressure measurements are taken at the center
of the column. The measurement uncertainties of the two instruments are
5 ml/min and 200 Pa, respectively.

Three �les holding synthetically generated sets of 
ow rate and pres-
sure data with no or random measurement errors are provided on �les
nonoise.dat, noisy.dat, and noisier.dat, respectively. The experiment can
be simulated using TOUGH2 input �le darcy. TOUGH2 is used in combi-
nation with the Equation-Of-State (EOS) module number 3 for water, air,
and heat.

5.3.2 Exercise 1: Solve the forward problem

In a �rst step, we solve the forward problem with some initial guesses for
the unknown parameters. Type:



Figure 5.1: Schematic of a transient, two-phase 
ow experiment. Water is
injected into a partially saturated column. Injection rate at the inlet and
pressure in the center of the column are measured as a function of time.

itough2 darcy1i darcy 3 &

The iTOUGH2 output �le darcy1i.out or the plot �le darcy1i.col contain
information about the di�erences between the data and the simulation with
the initial parameter set. Answer the following questions:

Questions

1. Generate a plot of the data and the simulation results (see also Figures
5.2 and 5.3 on page 43), look at the residual plot in �le darcy1i.out,
or examine the columns under heading RESIDUAL ANALYSIS. Describe
the mismatch between the data and the simulation.

2. How would you change the parameters to improve the match?

5.3.3 Exercise 2: Calibration, no measurement errors

Run the following inversion:

itough2 darcy2i darcy 3 &

Type prista during the inversion to check the status of your run. Type
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Figure 5.2: Flow rates at inlet calculated with initial parameter set (dashed
line) and after calibration (solid line). Synthetic data are shown as squares.
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Figure 5.3: Pressure transient at center of column calculated with initial
parameter set (dashed line) and after calibration (solid line). Synthetic
data are shown as squares.
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kit for additional options and early termination of your run. Examine �le
darcy2i.out and comment on the following questions:

Questions

1. Which parameters have been estimated?

2. How many calibration points were selected?

3. De�ne and indicate the degree of freedom of this inversion.

4. Which minimization algorithm was used?

5. Describe the path taken by the minimzation algorithm.

6. Which parameter is the most sensitive one?

7. Which single observation (type and time) contains the most informa-
tion regarding each of the parameters, and overall?

8. Which observation type (
ow rates or pressures) contains the most
information regarding each of the parameters, and overall?

9. What is the value of the a posteriori error variance s20? Why is it so
small?

10. Why was the error analysis based on the a priori error variance �20?

11. What is the estimation uncertainty of the three parameters?

12. What does the correlation coeÆcient between log(k) and porosity in-
dicate?

13. Give a physical explanation why the correlation coeÆcient is positive.

14. Which of the three parameters is the most independent, and which
exhibits the largest overall correlation?

15. Examine and discuss the correlation chart.

16. What is the inital and �nal value of the objective function?

17. What is the result of the Fisher model test?

18. Why is the �nal value of the objective function so small?

19. What is the best estimate parameter set and the estimation uncer-
tainty?
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5.3.4 Exercise 3: Calibration, noisy data

Copy iTOUGH2 input �le darcy2i to darcy3i. Edit �le darcy3i. Change
name of the selected data from data �le noisy.dat or noisier.dat instead of
nonoise.dat by reassigning the comment character \#". Rerun the inversion.

Comment on the following issues:

1. How big is the a posteriori error variance?

2. Elaborate on the result of the Fisher Model test.

3. Which observation leads to the maximum residual? Is it acceptable?

4. What is the best estimate parameter set? Compare it with the true
parameter set obtained in the previous inversion.

5. Comment on the fact that porosity is overestimated, whereas initial
gas saturation in underestimated.

6. Under which conditions do you expect predictions made with the es-
timated parameter set to be acceptable?

5.3.5 Exercise 4: Explore

File darcy4i (see following page) is a template based on �le darcy3i. Re-
place the question marks in this �le, and explore the e�ects of chang-
ing options on the results. You may introduce fewer or more parameters
than used before, omit or add data, change standard deviations of the
data or the initial parameter guesses, use di�erent objective functions or
minimization algorithms, and change iteration parameters. Try to explain
the changes with respect to the reference cases discussed in Sections 5.3.3
and 5.3.4. Use the command index provided on the iTOUGH2 Web page
http://www-esd.lbl.gov/iTOUGH2.
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--------------------------------------------------------------------------------

iTOUGH2 SAMPLE PROBLEM

--------------------------------------------------------------------------------

Direct problem : darcy

Inverse problem : darcy4i

Data files : nonoise.dat, noisy.dat, noisier.dat

EOS module : 3

Description : Estimate permeability, porosity, and initial gas saturation

based on synthetic pressure and flow rate data.

Execution : itough2 darcy4i darcy 3 &

--------------------------------------------------------------------------------

Look for "???" and fill in parameters as needed.

Invoke, modify, or remove options using "#" in the first column,

adding or removing the comment character /*,

or by adding or removing the appropriate command level marker >>, >>>, ... .

Check out additional options listed on the Web at http://www-esd.lbl.gov/iTOUGH2,

click on "Command Index" and the individual commands for a description. */

> PARAMETER

/* ??? (delete this line if you want to estimate absolute permeability)

>> ABSOLUTE permeability

>>> MATERIAL : SAND_ BOUND

>>>> ANNOTATION : log(abs. perm.)

>>>> estimate LOGARITHM

>>>> initial GUESS : -??.?

>>>> RANGE : -13.0 -11.0

>>>> VARIATION : 0.5

<<<<

<<<

*/

/* ??? (delete this line if you want to estimate porosity)

>> POROSITY

>>> MATERIAL : SAND_

>>>> ANNOTATION : Porosity

>>>> estimate VALUE

>>>> RANGE : 0.01 0.99

>>>> initial GUESS : 0.??

>>>> VARIATION : 0.05

<<<<

<<<

*/

/* ??? (delete this line if you want to estimate initial gas saturation)

>> INITIAL condition for primary variable No.:2

>>> DEFAULT

>>>> ANNOTATION : Initial gas sat.

>>>> VALUE

>>>> admissible RANGE : 10.01 10.99

>>>> initial GUESS : 10.?? (you must add 10.0 to saturation!)

>>>> VARIATION : 0.05

<<<<

<<<

*/

<<

Block > PARAMETER of iTOUGH2 input �le darcy4i.
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> OBSERVATION

... You may change the number of calibration points and

their spacing in time.

>> select : 20 points in TIME, EQUALLY spaced between

30.0 600.0 seconds

/* ??? (delete this line if you want to match pressure data)

>> PRESSURE

>>> ELEMENT : A1125

>>>> ANNOTATION : Pressure 1/2

>>>> HEADER contains : 5 lines

>>>> SET : 1

>>>> COLUMNS : 1 2

... You may select either a set with noisy data (noisy.dat),

a noisier data set (noisier.dat), or one

with exact measurements (nonoise.dat)

>>>> Read DATA from FILE : noisy.dat ??? (time is in MINUTES)

>>>> standard DEVIATION : ??? Pa (measurement error)

<<<<

<<<

*/

/* ??? (delete this line if you want to match flow rate data)

>> LIQUID FLOW RATE

>>> CONNECTION defining inlet: IN__0 A11_1

>>>> ANNOTATION : Flow inlet

>>>> FACTOR :-1.666667E-05 (ml/min - kg/sec)

>>>> HEADER contains : 5 lines

>>>> SET : 2

>>>> COLUMNS : 1 2

>>>> Read DATA from FILE : noisy.dat ??? (time is in MINUTES)

>>>> standard DEVIATION : ??? ml/min (measurement error)

<<<<

<<<

*/

<<

Block > OBSERVATION of iTOUGH2 input �le darcy4i.
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> COMPUTATION

>> STOPPING criteria

>>> after : 5 ITERATIONS

>>> initial value of LEVENBERG parameter: 0.001

>>> MARQUARDT parameter: 10.0

>>> maximum scaled STEP size: 2.0

ignore WARNINGS

<<<

>> OUTPUT

RESIDUALS

>>> FORMAT of plot file *.col: COLUMNS

>>> output time in MINUTES

<<<

>> JACOBIAN

CENTERED finite differences

>>> FORWARD finite differences

>>> PERTURB by: 1 %

<<<

>> ERROR

use A POSTERIORI error variance

use A PRIORI error variance

>>> perform FISHER model test

>>> significance level (1-ALPHA) = 95 %

perform FOSM uncertainty propagation analysis

<<<

>> OPTIONS

--- You may choose a different objective function:

>>> LEAST-SQUARES

L1-ESTIMATOR

QUADRATIC-LINEAR, k : 2

CAUCHY

ANDREW c : 1.5

--- You may choose a different minimization algorithm:

SIMPLEX

>>> LEVENBERG-MARQUARDT

GAUSS-NEWTON

<<<

<<

<

--------------------------------------------------------------------------------

Block > COMPUTATION of iTOUGH2 input �le darcy4i.
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5.3.6 Additional exercises

Additional exercises (Sample Problems 1 through 7) are part of the iTOUGH2
distribution and can be found in subdirectories �/itough2/samples/sampleX.

1. Sample Problem 1 is a tutorial similar to the one discussed in this
lecture. It covers the main applications:

� Solving the forward problem;

� Performing a sensitivity analysis for optimizing the experimental
design;

� Estimating parameters by automatic model calibration;

� Assessing prediction uncertainties by means of linear uncertainty
propagation analysis and Monte Carlo simulations.

2. Sample Problem 2 discusses the analysis of the gas-pressure-pulse-
decay experiment described in Sections 1.3, 4.1.3, and 4.1.4 as well as
in [9]. Parameter correlations, the problem of non-uniqueness, and the
parameterization of systematic errors are discussed in detail.

3. Sample Problem 3 demonstrates the use of sensitivity measures for
automatically selecting the parameters to be estimated based on syn-
thetically generated data from a fractured geothermal reservoir.

4. Sample Problem 4 features di�erent minimization algorithms for the
analysis of data from a multi-step, radial desaturation experiment.

5. Sample Problem 5 shows the matching of saturation, water poten-
tial, and pneumatic data from deep boreholes, where the observed gas
pressure 
uctuations are a result of atmospheric pressure variations.

6. Sample Problem 6 discusses the analysis of a ventilation experiment
described in [8].

7. Sample Problem 7 examines numerical di�usion e�ect and illustrates
the estimation of model-related parameters.

All sample problems are described in [7].
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